Generic models for pests and diseases

Simone Orlandini DIPSA-UNIFI

A Simple Generic Infection Model for Foliar Fungal Plant Pathogens

AIM:

The model predicts infection period by fungal plant pathogen. It estimates W(T) the wetness duration (in hours) required to critical disease threshold: 20% disease incidence or 5% disease severity

$$f(T) = \begin{bmatrix} Tmax - T \\ Tmax - Topt \end{bmatrix} \begin{bmatrix} T - Tmin \\ Topt - Tmin \end{bmatrix}$$

(Topt – Tmin)/(Tmax – Topt)

f(T)= temperature function
T= mean temperature (°C) during wetness period
Tmin= minimun temperature for infection (°C)
Tmax= maximum temperature for infection (°C)
Topt= optimum temperature for infection (°C)

TABLE 2. Infection model parameters and statistical comparison between model predictions and observations based on published studies relating fungal infection to temperature and wetness duration

$W(T) = Wmin/f(T) \le Wmax$

W(T)=leaf wetness duration for infection (h)

Wmin= minimum value of the wetness duration requirement for infection (h)

Wmax= optimum value of the wetness duration requirement for infection (h)

			Ref.									
Pathogen	Host ^a	Ref. ^b	T_{\min}^{c}	T_{\min}^{d}	Tmax ^e	T_{opt} f	W_{\min}^{E}	Wmaxh	Obsi	ri	RMS ^k	SRMS ¹
Albugo occidentalis	Spinach	81		6	28	16	3	12	12	0.87	2.8	0.9
Alternaria brassicae	Oilseed rape	38	6	2.6	35	18	6	22	9	0.96	4.0	0.7
Alternaria cucumerina	Muskmelon	31		12	25	19	8	24	6	0.98	1.6	0.2
Alternaria mali	Apple	32		1	35	23	5	40	16	0.88	5.2	1.0
Alternaria porri	Onion	80		1	35	23	8	24	5	1.00	0.7	0.1
Alternaria sp.	Mineola tangelo	18		9.4	35	25	8	16	5	0.90	1.3	0.2
Ascochyta rabiei	Chick pea	84		1	35	25	12	48	6	0.10	19.2	1.6
Bipolaris orvzae	Rice	59	25	8	35	27.5	10	24	6	0.78	5.0	0.5
Botryosphaeria dothidea	Apple fruit	58		8	35	28	8	19	6	0.95	1.6	0.2
Botryosphaeria obtuse	Apple fruit	7		1	35	26	5	40	7	0.97	3.2	0.6
Botrytis cinerea	Grape	56	57	10	35	20	4	10	11	0.94	0.8	0.2
Botrytis cinerea	Strawberry flower	15		5	35	25	8	18	7	0.13	5.0	0.6
Botrytis cinerea	Grape flower	56	57	ĩ	34	25	ĩ	12	6	0.99	0.6	0.6
Botrytis sauamosa	Onion	82		i	28	18	15	24	8	0.50	47	0.3
Bremia lactucae	Lettuce	67		1	25	15	4	10	6	0.98	0.8	0.2
Cercospora arachidicola	Peanut	03	6	13.3	35	24	24	48	š	0.72	8.0	0.4
Cercospora carotae	Carrot	20		11	32	24	28	96	5	0.98	16.5	0.6
Cercosportidium personatum	Doonut	17	6		35	20	16	33	6	0.33	6.0	0.4
Coccomposes hiemalis	Prunus so	28	20	4	30	18	5	30	- ni	0.05	7.8	1.6
Colletotrichum acutatum	Stewberry fruit	02	29	7	35	27.5	6	36	6	0.90	4.4	0.7
Colletotrichum actuatum	Watermelon	53		2	30	24	2	16	7	0.60	5.6	2.8
Didymalla arachidicala	Doonut	70	6	12.2	25	19.5	24	210	ŝ	0.10	55.5	2.3
Diplocarnon earlianum	Steamberry	08	51	2.0	35	22.5	12	18	3	0.53	32	0.3
Cuionardia hidwellii	Gmma	76	51	7	35	27	6	24	10	0.74	51	0.0
Chargearna consecution	chape	70		'	35	21		24	10	0.74	2.1	0.9
inninasi visoinianaa	Appla	4		1	25	21	2	24	12	0.00	1.1	0.5
Juniperi-virginianae	Oilsood moo	12	6	26	35	18.5		18	5	0.99	4.8	0.5
Malampeora madaraa	Dooler	50	0	12	29	20.5	5	10	10	0.01	4.0	0.1
Metampsora meausae	Popiar Devenue Cenit	12	44	12	26	20.5	10	14	10	0.96	0.7	0.1
Monunia fracticola Mycombastella ninodes	Prunus mun	61	44	14	35	20	10	72	6	1.00	21.0	3.7
Dhahamaan naakuchini	Pea	40	2	10	20	20		12	6	0.90	1.2	0.2
Phakopsora pachyrnigi Diwtophthora castorium	Soybean Apple fmit	48	0	10	28	25	2	12	6	0.00	1.5	0.2
Phytophinora cactorum	Apple nun Steunbarn fruit	27		6	25	20.5	4	2	0	0.97	0.4	0.2
Phytophinora cactorian Distophinora inferiore	Datata	62	10	2	22	15	2	12	2	0.65	2.2	0.6
Phytophinora injesians	Course	42	19		20	20	2	14	6	0.00	3.2	0.5
Plasmopara valcola	Grape	4.5			20	20	4	14	0	0.99	0.6	0.5
Pseudoperonospora cabensis Duosisia asashidia	Descut	23	6	5	26	20	4	25	6	0.96	5.2	1.0
Puccinia arachiais	Peanut	10	0	2	22	23	2	20	2	0.82	3.2	1.0
Puccinia menthae	Peppermint	21	60	2	30	10	6	12	2	0.87	1.6	0.5
Puccinia psian	Eucaryptus	0.3	32	26	20	21.5	6	24	2	0.98	5.9	0.6
Puccinia reconaua	wneat	80	0	2.6	30	25	2	10	0	0.61	5.4	1.1
Puccinia strigormis	wheat	24	6	2.6	18	8.5	2	8	6	0.99	0.2	0.0
Pyrenopeziza brassicae	Oilseed rape	- 54	6	2.6	24	16	6	24	-	0.90	3.6	0.6
Pyrenopnora teres	Barley	11	6	2.6	30	23	2	6	4	0.95	0.4	0.1
Pyrenophora teres	Barley	72	6	2.6	35	18		48	4	1.00	11.9	2.4
Rhynchosporium secalis	Barley	94	6	2.6	30	22.5	12	48	4	0.98	4.2	0.4
Rhynchosporium secalis	Barley	65	6	2.6	30	22.5	6	19	6	0.94	2.3	0.4
Sclerotinia sclerotiorum	Bean	91		1	30	25	48	144	5	0.88	24.0	0.5
Septoria glycines	Soybean	70	6	10	35	25	6	18	4	0.83	4.2	0.7
Venturia inaequalis	Apple	78		1	35	20	6	40.5	26	0.65	2.7	0.5
Venturia pirina	Pear	77		1	35	22	10	25	7	0.98	1.3	0.1
Venturia pirina	Pear	87		1	35	20	10	30	7	0.99	1.5	0.1
Wilsonomyces carpophilus	Almond	71		5	35	25	12	48	9	0.92	6.6	0.6

Foliage unless otherwise noted.

^b Reference to temperature-wetness combination study.

Reference for estimation of T_{min} from crop development.

^d T_{min} = minimum temperature for infection (°C).

T_{max} = maximum temperature for infection (°C).

f T_{opt} = optimum temperature for infection (°C).

5 Wmin = minimum value of the wetness duration requirement for infection (h).

h Wmaa = optimum value of the wetness duration requirement (h).

ⁱ Number of temperature/wetness combinations included as observations.

j r = Pearson's correlation coefficient (54).

k RMS = root mean square error (75).

Workers need toor beritrebasts - 2MQ2 1

EXAMPLE: VENTURIA INAEQUALIS

SENSITIVITY TO DRY INTERRUPTIONS OF FUNGAL FOLIAR PATHOGEN

Classification of fungal foliar pathogens based on their ability to withstand interruptions to wetting during infection based on published studies relating infection to temperature and wetness duration

Sensitivity to dry interruption	D ₅₀ *	Species	Reference
Sensitive	1–2 h	Puccinia recondita	85
		Puccinia striiformis	85
		Pyrenophora tritici-repentis	66
Moderate	4-20 h	Alternaria brassicae	55
		Alternaria linicola	88
		Alternaria porri	80
		Ascochyta rabiei	84
		Bipolaris oryzae	59
		Botryosphaeria obtusa	8
		Botrytis squamosa	3
		Cercospora kikuchii	68
		Coccomyces hiemalis	28
		Stagonospora nodorum	41
		Uromyces phaseoli	9
		Venturia pirina	86
Insensitive	≥24 h	Cercospora carotae	21
		Mycosphaerella graminicola	73
		Stemphylium botryosum	9
		Venturia inaequalis	10,86

 D₅₀ is defined as the duration of a dry period at relative humidities of <95% that will result in a 50% reduction in infection compared with a continuous wetness period.

	A	В	С	D	E	F	G	Н		J	k
1	Generic Infection Model										
2	By Roger Magarey										
3											
F	The Generic infection model calculates predicted infection										
4	severity values for a given wetness duration and										
5	2 2										
6	$I = W f_{(T)} / W_{min} \geq W / W_{max}$										
	where, W = wetness duration h, $f_{(T)}$ = temperature										
	response function, and $W_{\min, \max}$ = the minimum and										
7	maximum value of the wetness duration requirement.										
8											
9	The temperature moisture response function is based	on Wang a	and Engel 1	998. This v	was shown	to be very	close to the	temperatu	e function	of Yin, used	l in th
10			In workshe	eet daily							
11	$[f_T(T, T_{\min}, T_{opt}, T_{\max})]$		F1	= (a b- c)/d	ł	Wang and	Engel 199	8 Eqn 6			
12	$\int \frac{2(T-T_{\min})^{\theta}(T_{\exp}-T_{\min})^{\theta}-(T-T_{\min})^{2\theta}}{(T-T_{\min})^{2\theta}}; \text{if } T_{\min} \leq T \leq T_{\max}$	(6)	F2	= Wmin/F	1	Magarey e	t al 2005 E	qn 1			
13	$= \begin{cases} (T_{op} - T_{min})^{-1} \\ 0 \\ \vdots & \text{if } T < T_{min} \text{ or } T > T_{max} \end{cases}$										
14											
15	Model Outputs	Commen	ts								
16	1. Infection model output	This variab	ole calculate	es infection	from Wmir	n and Wma:	k and F2				
17	Accumulated infection output	Accumula	tion of abov	e							
18	Infection output (Precip days only)	This infect	ion variable	incorporat	es the spla	ish requiren	hent				
19	4. Accumulated infection oputput (precip days only)	Accumula	tion of abov	e							
20	5. Infection events	Major infe	ction events	s, initated by	y rain and o	continue fro	m previous	day or with	additional	rain.	
21											
22											
23	Inputs										
24	Input weather data must be pasted into daily										
25	Average temperature										
26	Leaf wetness h/day										
27	Precipitation										
28											
29	Parameters										
30	Parameter values must be entered into Parameters w	orksheet									
31	Tmin	Mininimun	n temperatu	ure for infect	ion						
32	Tmax	Maximum	temperatur	e for infection	on						
33	Topt	Optimum	temperature	e for infectio	n						
34	Wmin	Minimum	wetness du	ration requi	rement						
35	Wmax	Maximum	wetness di	uration requ	irment						
36	Precipitation	Precipitati	on threshol	d for infectio	on						
37	Continuation	Interruptio	n value								
1 38											

Using Growing Degree Days For Pest Management

The effect of temperature on insect developing rate is often described by using a thermal time concept. The growing degree-days (GDD) is a commonly used thermal time method.

It relates development rate linearly to temperatures above the lower threshold (often referred to as the base temperature below which the development stops).

In some applications of the GDD procedure, the upper temperature threshold is introduced, above which the development rate stops.

Calculation of Growing Degree Days

The traditional method is based on accumulation of daily mean temperature between lower and upper thresholds.

GDD _{TOT} = Σ (GDD _{Daily})

- if Tmed < Tinf **GDD** _{daily} = 0
- if Tmed > Tsup GDD _{daily} = Tsup Tinf
- if Tinf < Tmed < Tsup GDD _{daily} = Tmed Tinf

where **Tmed** is daily mean temperature; **Tinf** lower threshold; **Tsup** upper threshold.

AVERAGE METHOD

Degree days can be calculated using a simple formula for the average daily temperature, calculated from the daily maximum and minimum temperatures, minus the baseline (lower developmental threshold):

[(daily maximum temperature + daily minimum temperature)/2] – baseline temperature.

This calculation method is the simplest and least precise.

SINE WAVE METHOD

It is based on the assumption that temperatures of a 24-hour day follow a sine wave curve. The number of degree days is then calculated as the area under this curve within the lower and upper temperature thresholds

SINE WAVE METHOD

The area in black under the curve represents the number of degree days that fall between a lower and upper threshold, for each 24-hour period

partial list of insect pests that occur in Utah for which we have temperature thresholds and degree day models. an asterisk have been validated for Utah.

Tarç	get Insect	Lower	Upper		
Name	e Scientific Name		Developmental Threshold (F)	Availability of Model	
evil	Hypera postica	50	87	yes	
n	Pseudaletia unipuncta	50	84	yes	
vorm	Agrotis ipsilon	50	86	yes	
maggot	Delia radicum	40	86	yes	
noth*	Cydia pomonella	50	88	yes	
vorm*	Helicoverpa zea	55	92	yes	
pine shoot moth	Rhyacionia bouliana	28		yes	
red mite	Panonychus ulmi	51		yes	
eachtree borer	Synanthedon exitiosa	50	87	no	
borer*	Podosesia syringae	50		yes	
anded leafroller*	Choristoneura rosaceana	43	85	yes	
ig borer*	Anarsia lineatella	50	88	yes	
с с	Cacopsylla pyricola	41	-	no	
scale*	Quadraspidiotus perniciosus	51	90	yes	
y root weevil	Otiorhynchus ovatus	40	103	yes	
d cutworm	Peridroma saucia	45	80	yes	
ısk fly∗	Rhagoletis completa	41	130	yes	
herry fruit fly*	Rhagoletis indifferens	41	130	yes	

del has been validated for Utah Ind model information from: UC-Davis IPM Web site: http://www.ipm.ucdavis.edu/MODELS/index.html